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Elastic constants from microscopic strain fluctuations
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Fluctuations of the instantaneous local Lagrangian straine i j (r ,t), measured with respect to a static ‘‘refer-
ence’’ lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic
computer simulations. The measured strains are systematically coarse-grained by averaging them within sub-
systems~of sizeLb) of a system~of total sizeL) in the canonical ensemble. Using a simple finite size scaling
theory we predict the behavior of the fluctuations^e i j ekl& as a function ofLb /L and extract elastic constants
of the systemin the thermodynamic limitat nonzero temperature. Our method is simple to implement, efficient,
and general enough to be able to handle a wide class of model systems, including those with singular potentials
without any essential modification. We illustrate the technique by computing isothermal elastic constants of
‘‘hard’’ and ‘‘soft’’ disk triangular solids in two dimensions from Monte Carlo and molecular dynamics
simulations. We compare our results with those from earlier simulations and theory.

PACS number~s!: 62.20.Dc, 05.202y, 05.10.2a, 05.10.Cc
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I. INTRODUCTION

One is often interested in long length scale and long ti
scale phenomena in solids~e.g., late stage kinetics of soli
state phase transformations@1,2#, motion of domain walls
interfaces@3#, fracture@4#, friction @5#, etc.!. Such phenom-
ena are usually described by continuum theories. Mic
scopic simulations@6# of finite systems, on the other han
like molecular dynamics, lattice Boltzmann or Monte Car
deal with microscopic variables like the positions and velo
ties of constituent particles and together with detailed kno
edge of interatomic potentials hope to build up a descript
of the macroscopic system from a knowledge of these mic
scopic variables. How does one recover continuum phy
from simulating the dynamics ofN particles? This requires
‘‘coarse-graining’’ procedure in space~for equilibrium! or
both space and time for nonequilibrium continuum theori
Over what coarse-graining length and time scale does
recover results consistent with continuum theories? In
paper we attempt to answer these questions for the sim
nontrivial case, namely, a crystalline solid,~without any
point, line, or surface defects@7#! in equilibrium, at a non-
zero temperature far away from phase transitions. We s
that coarse graining of microscopic local strain fluctuatio
obtained from configurations generated in a computer si
lation enables us to calculate elastic susceptibilities~compli-
ances! as a function of the coarse-graining length. Detai
finite size scaling analysis of this data yields finally elas
constants of the solid—the essential inputs to continu
elasticity theory@8#. The strain field~together with defect
densities! constitute the coarse-grained description of a so

*On leave from Material Science Division, Indira Gandhi Cen
for Atomic Research, Kalpakkam 603102, India.

†On leave from Institute of Mathematical Sciences, Tarama
Chennai 600113, India.
PRE 611063-651X/2000/61~2!/1072~9!/$15.00
e

-

,
-
l-
n
-

cs

.
ne
is
st

w
s
u-

d

d

essential for understanding solid state phase transitions
structural transitions@9,10# and melting@11–13#.

Calculation of elastic constants from simulations falls in
two categories, viz., they are obtained either from therm
averages of fluctuations of the stress or the strain—the
called ‘‘fluctuation’’ methods@14#, or from the stress-strain
curve as computed from a series of simulations@15#. Fluc-
tuation methods, though requiring longer runs for accumu
ing statistically significant data, are often preferred beca
the entire matrix of elastic constants can be evaluated
single run, whereas in the latter method for every elas
constant an appropriate strain~or stress! have to be applied.
Also mapping out the stress-strain curve can be treacher
especially for soft systems where the possibility of setting
a plastic flow in the system is high@37#. Though for most
systems careful applications of either procedure should y
results of comparable accuracy, they suffer from some co
mon limitations. Firstly, elastic constants are obtained fo
particular system sizeL. In order to take the infinite size
~thermodynamic! limit one needs to simulate a sequence
systems with increasing values ofL—often a computation-
ally expensive proposition since equilibration of large sy
tems take increasingly larger times. Secondly, these pro
dures are not general and fail for model systems of partic
interacting via singular potentials, e.g., the hard sph
@16,17# or the hard disk@18# system where the instantaneo
force on a particle is not well defined. To obtain elastic co
stants of hard systems, one therefore needs to develop sp
methods@16,17#. For instance, the elastic constants of t
hard sphere system were calculated by Runge and Ch
@17# by generalizing a technique used previously for calc
lating the hard sphere pressure@19#. In this approach one
tries to evaluate ensemble averages of quantities involv
delta functions by calculating acceptance probabilities of v
tual Monte Carlo steps. Such methods are cumbersom
use and may require ill-defined averages of quantities wh
variance has weak divergences@17#. In contrast, the method

i,
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PRE 61 1073ELASTIC CONSTANTS FROM MICROSCOPIC STRAIN . . .
presented here has several advantages. Firstly, elastic
stants are obtained from a coarse-graining procedure w
automatically gives the infinite system values. Secondly,
procedure needs only the instantaneous particle config
tions and makes no reference to the potential or forces.
therefore quite generally applicable toany system for which
these configurations or ‘‘snapshots’’ are known. Lastly,
will soon be evident that this technique is easy to use req
ing a computational effort not much more than a calculat
of, say, the pair distribution function@6# for a given particle
configuration.

There are three essential elements or steps in the me

~1! A procedure for calculating elastic strains from co
figurations.

~2! The coarse-graining procedure of averaging fluct
tions of these strains over larger and larger sub-blo
of lengthLb<L of a system of total sizeL and calcu-
lating the values of these fluctuations in the thermo
namic limit.

~3! Converting the data for the strain fluctuations into el
tic constants using well known results of continuu
elasticity theory@8,20#.

We take up the second of these steps first as it is q
general and applicable to fluctuations of any intensive v
able. Indeed, variants of this method have been used ex
sively @21–25# in the past for obtaining finite size scale
susceptibilities and goes by the name of ‘‘block analysis.’’
the next section~Sec. II! we describe this block-analysi
technique for obtaining the susceptibility of the tw
dimensional Ising model@24# for illustration. In Sec. III we
define the microscopic strainse i j (r ) and describe how we
obtain them from our computer simulations. We then expl
how to adopt the coarse-graining scheme described in Se
for strains to finally obtain the elastic constants. This is f
lowed by our results for the hard disk and the inverse twe
power ‘‘soft’’ disk systems in two dimensions. We conclud
this paper with a discussion of these results and enumera
future directions.

II. FINITE SIZE SCALING OF FLUCTUATIONS
IN SUBSYSTEMS

The block analysis method has been used to obtain
compressibility of the Ising lattice gas@22#, the two-
dimensional Lennard-Jones fluid@23,24# and fluids with in-
ternal classical and quantum degrees of freedom@26,27#. Be-
low, we describe a version of this method which allows us
explicitly and systematically incorporate finite size effec
arising both from a nonzero correlation length as well
special constraints due to the nature of the ensemble u
This treatment is analogous to the one used in Ref.@25# for
analyzing density fluctuations in the two-dimension
Lennard-Jones fluid.

To begin, consider a general system described by a sc
order parameterf(r ). We are interested in obtaining the
modynamic properties of this system in the disordered ph
It is therefore sufficient to use the following quadratic Helm
holtz free energy functional,F@$f%#,
on-
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F5kBT E ddr S 1

2
rf21

1

2
c$¹f~r !%2D . ~1!

The correlation functionGff(q) implied by the above free
energy in the high temperature phase (^f&50) is given@7#
by the following Ornstein-Zernicke form:

bGff~q!5^fqf2q&5X ff
`

1

11~qjff!2
, ~2!

where jff is the correlation length (5Ac/r ), the ~infinite
system! susceptibility X ff

` 5^f2& is, in turn, given by
limq→0bGff(q), b5(kBT)21 and the angular brackets^ &
5*@df# exp(2bF@$f%#).

Consider further that we want to measure this suscept
ity from a computer simulation of an Ising model within
finite simulation box of sizeL. In the course of the simula
tion we measuref averaged within a sub-block of sizeLb
<L,

f̄5Lb
2dELb

ddrf~r !. ~3!

Then the fluctuations off̄ measured within this block are

^f̄2&Lb
Lb

d5Lb
2dELb

ddr 8ddr ^f~r !f~r 8!&,

5ELb
ddr bGff~r !

[X ff
Lb , ~4!

whereGff(r ) is the inverse Fourier transform of the corr
lation function defined in Eq.~2! and is given@7#, quite
generally, by

Gff~r !5j22X ff
` ur u(d22)Y~ ur u/jff!, ~5!

where

Y~h!5E
0

`

zd21dzE ~2p!2ddVd

eiz cosu

@z21h2#
. ~6!

One expects therefore that asLb→L the block suscepti-
bility X ff

Lb →X ff
` . The behavior of the block susceptibil

ties, however, is strongly dependent on the ensemble@28# in
which the simulation is carried out. For example, using
lattice gas@7# language, in a ‘‘grand canonical’’ ensemb
where the chemical compositionf of the lattice gas is al-
lowed to fluctuate keeping the chemical potential differen
fixed (50 in this case!, the block susceptibility does ap
proachX ff

` for largeLb . In a canonical ensemble, howeve
the average off over the entire system is constrained
vanish for all times. In such a case the behavior ofX ff

Lb is
more complicated but can, nevertheless, be explicitly de
mined as follows.

Introducing the Lagrange multiplierk and defining the
new correlator,
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G8~r !5E @df#f~0!f~r !expS 2bF2kE ddr f D ,

where the free energyF is given by Eq.~1!, one shows that
that Gff8 (r )5Gff(r )2DL . The constantDL is given by

DL5
1

LdEL

ddr Gff~r !. ~7!

Repeating the analysis withGff(r ) replaced byGff8 (r ) one
obtains the desired finite size scaling form forX ff

Lb in the
canonical ensemble. We derive this form explicitly for t
case ofd52 below.

The correlation functionG(r ) is

G~r !5
2

p
j22X `K0~r /j! ~8!

whereK0 is a Bessel function and we have suppressed
subscripts inG, X, andj for simplicity. We have, therefore

DL5X `L22C~L/j! ~9!

with the functionC(a) being defined as

C~a!5
2

p
a2E

0

1E
0

1

dx dy K0~aAx21y2!. ~10!

As can be easily verifiedC(a) goes to 1 within a range
O(1). Using the above expressions we find finally

X Lb5X `@C~xL/j!2C~L/j!x2#. ~11!

This is the main result of this section.
Note that the form given above impliesX Lb→0 as Lb

→L. In general there will be higher-order corrections to E
~11! coming from higher-order correlations signifying th
breakdown of the quadratic form for the free energy Eq.~1!.
These introduce terms of orderx(2N) implying extra param-
eters~with the constraintX L50 being imposed to eliminate
one of them!. In Fig. 1 we have plottedX Lb3x againstx for

FIG. 1. A plot ofX Lb as a function of the relative sub-block siz
Lb /L as given by Eq.~11! for various values of the parameterL/j
(51, 5, 10, and 50!.
e

.

various values ofL/j. One observes that forL/j@1, C(a)
→1 and Eq.~11! goes over to the following simple limiting
form:

X Lb3x5X `@x2x3#. ~12!

One can then extractX ` from the slope of the linear region
at smallx. This is equivalent to the procedure followed, f
example, in Ref.@24# for extracting the compressibility o
the lattice gas at the critical density. Obviously, forL/j;1,
this construction becomes less well defined and the find
the ‘‘linear’’ region becomes subjective. Fitting the full da
to the form given in Eq.~11! makes it possible to extractX `

even when the system size is not much bigger than the
relation length. We illustrate this below using previous
published data of Rovere, Nielaba, and Binder@24# obtained
from simulations of the lattice gas model using spin e
change dynamics~canonical ensemble!.

In Fig. 2 we plotX Lb as a function ofL/Lb51/x. This
choice of the axes is identical to the one used in the orig
work @24# and is equivalent. The points are the data of R
@24# at various ~dimensionless! temperaturesT/J>Tc /J
52.2699. The curves through the data are fits to Eq.~11!.
The extracted compressibilityX ` are plotted in Fig. 3 and
compared with the previous estimates@24# based on linear
extrapolation and the theoretical curve@29#. Though, for
largeT where the correlation lengthj remains small one get
identical results,X ` extracted from the fits to the full curve
continues to be closer to the theoretical~exact! estimate as
T→Tc ~and consequentlyj→`). Simultaneously, we also
obtain from Eq.~11! an estimate for the correlation lengthj
which is shown in Fig. 4. The agreement with theory@30# is
not as good. This is only to be expected since the correla
length is a more sensitive quantity than the susceptibil
Also, the fitting procedure cannot overcome errors built in
the data because of critical slowing down nearTc which is
known to lead to a systematic underestimation due to the
of a biased estimator@31#.

FIG. 2. The susceptibilityX Lb(T) of a two-dimensional Ising
system in the constant magnetization ensemble as a function o
relative sub-block sizeL/Lb for values of the temperatureT/J
.Tc /J. The symbols refer to simulation data of the critical latti
gas simulation of Ref.@24# and the lines are fits of Eq.~11! to these
data.



la-
s

io

.
o
ce
s

he

le

al
elow
train

we,
en

ef-
le

e-

on

this

are

s

o

the
nc-

o-
ua-

n

a

r

th

PRE 61 1075ELASTIC CONSTANTS FROM MICROSCOPIC STRAIN . . .
Further, close toTc the free energy functional@Eq. ~1!#
ceases to be valid, the correlation functionGff(r )
;ur u2(d221h) and this affects our estimate for the corre
tion length. This is particularly important in two dimension
@30# where, in the Ising lattice gas, the exponenth51/4
indicates a rather large deviation of the correlation funct
from the Ornstein-Zernike behavior, Eq.~2!, while in d53,
h;0.03 and hence Eqs.~5! and~6! should be more accurate

Far away from a critical point, on the other hand, none
these criticisms apply and accurate estimates for the sus
tibility can be obtained even from relatively small system
even ind52 using the ideas described here.

III. STRAIN FLUCTUATIONS AND ELASTIC CONSTANTS

A. Theory

Imagine a system in the constant NVT~canonical! en-
semble at a fixed densityr5N/V evolving in timet. For any
‘‘snapshot’’ of this system taken from this ensemble, t

FIG. 3. The estimates forx`(T) as obtained from the fits show
in Fig. 2. (L) compared with the estimates of Ref.@24# (1). Note
that the finite size scaling analysis described here yields estim
which are closer to the exact result~curve!.

FIG. 4. The correlation lengthj ~in units of the lattice paramete
a) as a function of the scaled temperatureT/J of the lattice gas
model at the critical density. Symbols: our estimates from fits to
data of Ref.@24# and curve: theory Ref.@30#.
n

f
p-

local instantaneous displacement fielduR(t) defined over the
set of lattice vectors$R% of a reference lattice~at the same
densityr) is

uR~ t !5R~ t !2R, ~13!

where R(t) is the instantaneous position of the partic
tagged by the reference lattice pointR. In this paper we
concentrate only on perfect crystalline lattices; if topologic
defects such as dislocations are present the analysis b
needs to be modified. The instantaneous Lagrangian s
tensore i j defined atR is then given by@7,8#,

e i j 5
1

2 S ]ui

]Rj
1

]uj

]Ri
1

]ui

]Rk

]uk

]Rj
D . ~14!

The strains considered here are always small and so
hereafter, neglect the nonlinear terms in the definition giv
above for simplicity. The derivatives are required at the r
erence lattice pointsR and can be calculated by any suitab
finite difference scheme onceuR(t) is known. We are now in
a position to define coarse grained variablese i j

Lb which are
simply averages of the strain over a sub-block of sizeLb .
The fluctuation of this variable then defines the siz
dependent compliance matrixSi jkl 5^e i j ekl&. Before pro-
ceeding further, we introduce a compact Voigt notati
~which replaces a pair of indicesi j with onea) appropriate
for two dimensional strains–the only case considered in
paper. Using 1[x and 2[y, we have

i j 511, 22, 12,
~15!

a51, 2, 3.

The only nonzero components of the compliance matrix

S115^exxexx&5S22,

S125^exxeyy&5S21, ~16!

S3354^exyexy&.

It is also useful to define the following linear combination

S115^e1e1&52~S111S12!,
~17!

S225^e2e2&52~S112S12!,

where e15exx1eyy and e25exx2eyy . Once the block-
averaged strainse i j

Lb are obtained, it is straightforward t
calculate these fluctuations~for each value ofLb).

Since we are interested in the elastic properties of
system far away from any phase transition, a quadratic fu
tional for the Helmholtz free energyF suffices. We therefore
use the following Landau functional appropriate for a tw
dimensional solid involving coarse-grained strains to q
dratic order in strains and its derivatives,

F5E ddr $c1e1
2 1c2e2

2 1c3e3
21d1„¹e1~r !…2

1d2„¹e2~r !…21d3„¹e3~r !…2%. ~18!
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The coefficientsci anddi are, of course, not all independe
because of further symmetries@7,8# which are present for the
two-dimensional triangular solid though this does not infl
ence the rest of our analysis. Note that Eq.~18! is simply a
sum of three independent functionals ine1 , e2 , and e3,
each of the forms given in Eq.~1!. Thus the analysis de
scribed in detail in Sec. II carries over almost unchang
There is one small difference, however. Even in the cano
cal ensemble with fixed box dimensions, the microsco
strain fluctuations over the whole box are not zero but
mains a small number of the order of (a/L)2 wherea is the
lattice parameter so that

EL

ddr ^ea~r !eb~0!&5CabS a

L D 2

. ~19!

Incorporating this modification into Eq.~11! we get

Sgg
Lb 5Sgg

` FC~xL/j!2XC~L/j!2CS a

L D 2Cx2G1O~x4!,

~20!

where the indexg takes the values1, 2, or 3 and x
5Lb /L and we have suppressed subscripts onj and C for
clarity. The above equation Eq.~20! can now be used to
obtain thesystem size independentquantitiesSab

` , j andC.
Once the finite size scaled compliances are obtained

elastic constants, viz., the Bulk modulusB5r]P/]r and the
shear modulusm are obtained simply using the formulas@20#

bB5
1

2S11
, ~21!

bm5
1

2S22
2bP, ~22!

bm5
1

2S33
2bP, ~23!

where we assume that the system is under a uniform hy
static pressureP. The two expressions form should give
identical results and constitutes an excellent internal ch
for numerical accuracy.

This completes the description of our technique for o
taining elastic constants. It is obvious that throughout
derivation we do not ever refer to the interparticle intera
tions. The only place where this information is required is
the calculation of the pressureP of the system—a quantity
routinely calculated in simulations. This, as we show later
not a limitation even for systems with hard core potentia
where the calculation of pressure is more involved@17#. We
now describe our results for two models of two-dimensio
solids. The elastic constants in each case are obtained
high density perfect triangular solid. The generalization
this method for higher dimensions, more complicated~less
symmetrical! crystal types and even for amorphous materi
is straightforward.

B. Hard disks

Hard disks interact with the extremely short-ranged p
tential,
-

.
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bV~r !50 for r .s

bV~r !5` for r<s,

wheres the hard sphere diameter can be used as the un
length and there is no energy scale. This makes the hard
system particularly easy to simulate and is a popular tes
ground for theories and techniques@6#. On the other hand, a
calculation of elastic constants in this system is diffic
since a harmonic description for such a solid does not exis
zero temperature. The energy vanishes and the free ener
wholly entropic in origin. For this reason most computation
methods for obtaining elastic constants which work
smooth potentials have to be either discarded or modifie
order to study elastic properties of hard systems@16–18#.
The only previous study of the hard disk elastic moduli is
Wojciechowski and Bran´kai @18#. These authors carried out
Monte Carlo simulation of 56 hard disks in a box of variab
shape in the constant stress ensemble@6#. The elastic con-
stants were obtained from the fluctuations in the shape of
entire box. Results were checked for finite size effects
repeating a few test runs for 24, 30, and 90 particles.

In our method the results derived in the previous secti
carry over without any change to systems of particles in
acting with hard potentials. Further we automatically calc
late finite size scaled quantities. We present results for ela
constants of the hard disk system in two dimensions fo
range of densities 0.95,r* ,1.1 from Monte Carlo~MC!
simulations with systems with sizes varying from 168
12480 particles. The simulations have been set up for a
fect triangular lattice in a slightly rectangular simulation b
with periodic boundary conditions. The number of ce
along each side of the box is adjusted to make the simula
box as close to a square as possible. In the hard disk sy
one can considerably accelerate the MC dynamics using
cial updating schemes@6#. We use a square grid as an ove
lay on the simulation box, and choose the grid size to
small enough to accommodate only one disk. An occupa
list of the grid positions is computed and continuously u
dated. For an attempted move of a hard disk from one g
point to another, we first check if the new point is unocc
pied and then check for overlap only with the particles o
cupying the neighboring grid points. At the densityrs2

5r* 5 1 a standard simulation had the length of 33106 MC
steps, every 10th MC step has been taken for averaging
servables, in particular the block analysis was done for 1
random placements of the block.

In Fig. 5 we show the strain-strain fluctuations as a fun
tion of the relative sub-block size computed in a system w
N53120 hard disks at a density ofr* 51.0. The data are
fitted to Eq.~20! where we keep terms up to order (Lb /L)4.
The fits to Eq.~20! are excellent and the infinite syste
compliancesSab

` can be determined immediately. To dete
mine the sensitivity of our results to the total system size
have also simulated systems withN512 480, 780, and an
extremely small system consisting ofN5168 particles. Us-
ing the ‘‘infinite’’ system values determined from theN
53120 particle system it is, in principle, possible to pred
the behavior of the strain fluctuationsS33(Lb) for the other
systems. In Fig. 6 we have plottedS33(Lb) for 12 480, 3120,
780, and 168 particles. The points are the simulation d
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while the curves are fits to Eq.~20! where the value ofS33
`

was constrained to be fixed at that obtained from the data
3120 particles. The results are seen to be almost insens
to the total system size as expected.

Once the compliancesSgg are obtained the elastic con
stants, in units ofkBT/s2, can be derived immediately usin
Eqs.~21!–~23!. Our results for densities other thanr* 51.0
were obtained from Monte Carlo simulations forN53120
hard disks. To obtain the pressure, which is required
evaluating the shear modulusm, we simply integrate our
bulk modulusB ~independent of the pressure in two dime
sions! starting from the rather high densityr* 51.1 where
the free volume@32# expression for the pressurebPs2

5P* 52r/(2/A3r21) is accurate. Our results@33# for the
equation of state for the hard disk system is shown in Fig

FIG. 5. Strain-strain fluctuations or elements of the complia
matrix Sgg defined in Eq.~16! (g51,2, or 3! as a function of
relative sub-block sizeLb /L, symbols: simulation data; curve: fit t
the scaling function Eq.~20!. The results~symbols! shown are for a
system ofN53120 hard disks atr* 51.0.

FIG. 6. The infinite system susceptibilityS33
` obtained from the

data forN53120 particles is used to predict the finite size behav
of N5168, 780, and 12480 particles. ForN5168, 780, and 3120
the symbols are simulation data and the solid lines are the bes
to the form given in Eq.~20! where the parameterS33

` is kept fixed
at the value obtained from fits to the data for 3120 particles.
N512 480 we have acquired data~symbols! only for L/Lb5 an
integer~between 4 and 35! and the dotted line is a straight line wit
the slope given by the sameS33

` .
or
ive

r

7

and those for the elastic constants are shown in Fig. 8.
two expressions for the shear modulus in Eqs.~22! and~23!
give almost identical results and this gives us confide
about the internal consistency of our method. We have a
compared our results to those of Wojciechowski and Bra´ka
@18#. We find that while their values of the pressure and b
modulus are in good agreement with ours~and with free
volume theory! they grossly overestimate the shear modul
This is probably due to the extreme small size of their s
tems and/or insufficient averaging. Our results for the s
block analysis shows that finite size effects are nontrivial
elastic strain fluctuations and they cannot be evaluated

e

r

ts

r

FIG. 7. The equation of state of the hard disk solid, pressureP*
as a function of the densityr* . We compare our results (L) with
those of Ref.@18# (1) and the free volume theory~line!.

FIG. 8. The bulk~B! and shear (m) moduli in units ofkBT/s2

for the hard disk solid. Our results forB (m) are given byh (L).
The values for the corresponding quantities from Ref.@18# are
given by1 and3. The line through the bulk modulus values is th
analytical expression obtained from the free volume prediction
the pressure. The line through our shear modulus values is obta
from the free volume bulk modulus using the Cauchy relationm
5B/22P. The error bars in our values for the shear modulus c
respond to the two alternative formulas for evaluatingm as given in
Eqs.~22! and ~23! and represents our most conservative error e
mates.
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varying the total size of the system from 24 to 90, an inter
which is less than half of a decade@34#. One immediate
consequence of our results is that the Cauchy relation@18,35#
m5B/22P* is seen to be valid up to615% over the entire
density range we studied@see Fig. 9# though there is a sys
tematic deviation which changes sign going from negat
for small densities to positive as the density is increas
This is in agreement with the usual situation in a variety
real systems@35# with central potentials and highly symme
ric lattices and in disagreement with Ref.@18#. We have also
compared our estimates for the elastic constants with
density functional theory~DFT! of Rhysov and Tareyeva
@36#. We find that both the bulk and the shear moduli a
grossly overestimated—sometimes by as much as 100%

C. Soft disks

The system of particles in two dimensions interacting b
purely repulsive inverse 12th power pair potentialv(r i j ) of
the form given by

v~r !5eS s

r D 12

~24!

has been studied@37,38# quite extensively. This system ha
the advantage of being realistic without being too comp
cated, since the form of the potential ensures that the en
equation of state can be determined from that of a sin
isotherm @37#. The quantitiese and s sets the scales fo
energy and distance respectively and can be both set equ
unity. Both the zero and the finite temperature elastic c
stants of this system has been calculated over a large r
of densities@37#. We have used this system to test the app
cablity of our method to molecular dynamics simulation
Our results here are not as extensive as in the hard disk
and we obtain elastic constants only for a single state po

We simulate this system with a simple leapfrog molecu
dynamics code incorporating a Nose´-Hoover thermostat@6#

FIG. 9. The percentage deviationDc of our shear modulus val
uesm from that obtained from our bulk moduliB using the Cauchy
relationm5B/22P as a function of the densityr* . The error bars
in this graph correspond to the two formulas for evaluatingm as
given in Eqs.~22! and ~23! as in the previous figure.
l
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in order to generate configurations in the canonicalNVT
ensemble. The temperatureT* 5kBT/e is fixed at 1 and the
densityr* 5rs2 at 1.05—a state sufficiently far from melt
ing. The number of particles were chosen to beN5780
which is same as that used in Ref.@37# and corresponds to
26330 unit cells of a triangular lattice within a nearly squa
box. Starting from the perfect lattice initial configuration, th
system was equilibrated for more than 106 molecular dynam-
ics time stepsDt50.002~in units ofAms2/e wherem is the
mass of the particles!. Subsequently, averages of thermod
namic quantities were calculated over'104 uncorrelated
configurations. Our results for the elastic compliancesSgg
are similar to that in the hard disk case and are shown in
10.

The final estimates for the bulk modulusB577.96 and
shear modulusm523.34~in units of kBT/s2) compare well
with those of Ref.@37# ~viz. B579.71 andm524.96). Errors
in our estimate for the bulk modulus arise from statistic
error in the acquired data and from the fits this is around 3
The shear modulus being a more sensitive quantity to c
pute is less accurate and the two expressions form in Eqs.
~22! and ~23! now differ by 10–15 %~the number quoted
above is the average value!. This may be due to the smalle
size of our system compared to the hard disk case, and
cause subsequent configurations in molecular dynam
simulations are more correlated than in Monte Carlo.

IV. CONCLUSION

In summary, we show in this paper that a systema
coarse-graining analysis of strain fluctuations yields ela
constants of solids from computer simulations to high ac
racy. Our method incorporates finite size scaling and p
duces elastic constants in the thermodynamic limit. The p
cedure is simple to implement and is general enough to
carried out for any system without modification. Before w
end this paper, the following comments are, perhaps, in
der.

The coarse-graining variable.Firstly, we introduced this
work as a ‘‘test’’ case of a general coarse-graining proced
which may be used to study the connection between mic
scopic computer simulations and long wavelength phys

FIG. 10. Same as in Fig. 5 but forN5780 soft disks interacting
with the inverse 12th power potential atr* 51.05 andT* 51.
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contained in continuum field theory approaches for ph
transitions in solids. In this regard we would like to point o
that we found, as usual, the choice of the coarse-grain
variable to be important. Our results show that microsco
strains calculated by taking finite differences of the displa
ment field constitute the correct variable to coarse grain o
One could alternatively have averaged the displacement
u(r ) and calculated the strains from the coarse grainedu.
This procedure happens to produce wrong results giving
elastic constants that are orders of magnitude too large.

The strain correlation length.One of the results from ou
calculations is the correlation lengthjab of strain fluctua-
tions. This is found to be small, 2–3 lattice spacings, for
components of the strain-strain correlation functions and
both the systems. We have checked this independently
explicitly measuring the correlation functionG33(iRi) de-
fined for all the lattice vectorsR of the two-dimensional
triangular reference lattice in the soft sphere system. Tho
the simple Ornstein-Zernicke form is inadequate to desc
detailed features of the correlation function and actual val
for the correlation length are hard to estimate, prelimin
results from our simulations do support the above content
The correlation of the local densityr(r ) or its phase—the
displacement fieldu~R! is, of course, long ranged, decayin
algebraically as it should in the solid state.

Renormalization by defects.Our results for the elastic
constants are obtained for high density perfect solids. In g
eral, a solid contains point~vacancies and interstitials! and
line ~dislocations! defects. For example, in the hard disk ca
dislocations start appearing in our systems below a densit
r* 50.95, a range we have not explored in this paper.
principle, there is no reason why our method cannot
adapted for systems containing defects though this invo
considerable computational complexity. There are basic
two problems that arise when one wishes to calculate ela
constants in the presence of defects. Firstly, we have to
sure that the density of each type of defect on the aver
attain their equilibrium value. This is nontrivial becau
nucleation barriers for defects densities are usually h
which means large system sizes and long simulation tim
are required. Defect mobilities are sluggish in a solid but
ensure that they are fully equilibrated one has to wait lo
enough to allow a typical dislocation to travel a distan
equal to the system size@39#. Secondly, once we are sure th
our configurations contain, on the average, the required
fect densities, we have to evaluate the strain field in
presence of these defects. This is, by far, the easier
Defects can be either isolated point defects that arise in g
canonical simulations or vacancy-interstitial pairs that nuc
ate pairs of dislocations of opposite sign. The concentra
v.
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of point defects in solids is vanishingly small;1022

21024 atomic percent and they are not expected to cha
the elastic constants substantially. In any case they can
easily taken into account by redefining the reference lat
points. Topological defects introduce, in addition, a singu
part in the displacement field so that the strain field can
now be evaluated simply by taking numerical derivative
However, the singular contribution for each dislocation
known analytically—so that for a given configuration on
can locate topological defects of each type and treat
smooth and the singular parts separately. Lastly, we wo
like to point out that the above two problems, viz.,~1! ob-
taining an equilibrium defect concentration and~2! evaluat-
ing the finite size scaling of singular strain fields of config
rations containing defects are present inall techniques for
calculating elastic constants, although so far they seem n
have recieved the attention they deserve.

The renormalization of elastic constants by dislocatio
can also be obtained approximately by using standard re
sion relations@12# once the core energy of a dislocation
known ~for instance from a separate simulation! and the
present~manifestly ‘‘bare’’! values of the elastic constan
are used as inputs. Such a calculation has applications
study of two-dimensional melting@11,12#. We are, at
present, carrying out detailed calculations of the elastic c
stants, equation of state, and dislocation core energies o
hard disk and inverse power triangular solids to investig
their melting behavior. Further, near to the melting transit
additional finite size effects would be manifest~due to di-
verging correlation lengths! and they have to be taken int
account separately which would necessarily involve simu
tions of a much larger scale than employed here. For
ample, it is known that near the liquid-to-hexatic transiti
(r* 50.89) N52562 hard disks are required@40# in order to
reach the thermodynamic limit.

Evaluation of local stresses. Lastly, we would like to
point out that our procedure can also be used in an ‘
verse’’ mode where knowing the elastic constants for a s
tem, strain fluctuations can be used to calculate lo
stresses. This is especially useful in experimental stud
@41,42# of melting behavior of colloidal particles where hig
quality digitized particle images are available. Efforts in th
direction are in progress.
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