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Surajit Senguptd* Peter Nielab& Madan Rac;" and K. Bindet
Ynstitut fir Physik, Johannes Gutenberg UniversiMainz, 55099 Mainz, Germany
2Universifa Konstanz, Fakultafur Physik, Fach M 691, 78457 Konstanz, Germany
% Raman Research Institute, C. V. Raman Avenue, Bangalore 560080, India
(Received 9 June 1999

Fluctuations of the instantaneous local Lagrangian stgin,t), measured with respect to a static “refer-
ence” lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic
computer simulations. The measured strains are systematically coarse-grained by averaging them within sub-
systemgof sizeL,) of a system(of total sizeL) in the canonical ensemble. Using a simple finite size scaling
theory we predict the behavior of the fluctuatidrs €) as a function oL, /L and extract elastic constants
of the systenin the thermodynamic lim#t nonzero temperature. Our method is simple to implement, efficient,
and general enough to be able to handle a wide class of model systems, including those with singular potentials
without any essential modification. We illustrate the technique by computing isothermal elastic constants of
“hard” and “soft” disk triangular solids in two dimensions from Monte Carlo and molecular dynamics
simulations. We compare our results with those from earlier simulations and theory.

PACS numbd(s): 62.20.Dc, 05.26y, 05.10—a, 05.10.Cc

[. INTRODUCTION essential for understanding solid state phase transitions like
structural transition$9,10] and melting[11-13.

One is often interested in long length scale and long time Calculation of elastic constants from simulations falls into
scale phenomena in solids.g., late stage kinetics of solid two categories, viz., they are obtained either from thermal
state phase transformatioh,2], motion of domain walls averages of fluctuations of the stress or the strain—the so-
interfaceq 3], fracture[4], friction [5], etc). Such phenom- called “fluctuation” methodq14], or from the stress-strain
ena are usually described by continuum theories. Microcurve as computed from a series of simulatiphS]. Fluc-
scopic simulationg6] of finite systems, on the other hand, tuation methods, though requiring longer runs for accumulat-
like molecular dynamics, lattice Boltzmann or Monte Carlo, ing statistically significant data, are often preferred because
deal with microscopic variables like the positions and veloci-the entire matrix of elastic constants can be evaluated in a
ties of constituent particles and together with detailed knowlsingle run, whereas in the latter method for every elastic
edge of interatomic potentials hope to build up a descriptiorconstant an appropriate straior stress have to be applied.
of the macroscopic system from a knowledge of these microAlso mapping out the stress-strain curve can be treacherous,
scopic variables. How does one recover continuum physicespecially for soft systems where the possibility of setting up
from simulating the dynamics & particles? This requires a a plastic flow in the system is higl87]. Though for most
“coarse-graining” procedure in spaddor equilibrium) or  systems careful applications of either procedure should yield
both space and time for nonequilibrium continuum theoriesresults of comparable accuracy, they suffer from some com-
Over what coarse-graining length and time scale does onmon limitations. Firstly, elastic constants are obtained for a
recover results consistent with continuum theories? In thiparticular system sizé. In order to take the infinite size
paper we attempt to answer these questions for the simpleghermodynamig limit one needs to simulate a sequence of
nontrivial case, namely, a crystalline solidlvithout any  systems with increasing values bf—often a computation-
point, line, or surface defec{s]) in equilibrium, at a non- ally expensive propaosition since equilibration of large sys-
zero temperature far away from phase transitions. We showems take increasingly larger times. Secondly, these proce-
that coarse graining of microscopic local strain fluctuationsdures are not general and fail for model systems of particles
obtained from configurations generated in a computer simuinteracting via singular potentials, e.g., the hard sphere
lation enables us to calculate elastic susceptibilittesnpli-  [16,17] or the hard disk18] system where the instantaneous
ance$ as a function of the coarse-graining length. Detailedforce on a particle is not well defined. To obtain elastic con-
finite size scaling analysis of this data yields finally elasticstants of hard systems, one therefore needs to develop special
constants of the solid—the essential inputs to continuunmethods[16,17]. For instance, the elastic constants of the
elasticity theory[8]. The strain field(together with defect hard sphere system were calculated by Runge and Chester
densitie$ constitute the coarse-grained description of a solid17] by generalizing a technique used previously for calcu-

lating the hard sphere pressurE]. In this approach one
tries to evaluate ensemble averages of quantities involving
*On leave from Material Science Division, Indira Gandhi Centre delta functions by calculating acceptance probabilities of vir-

for Atomic Research, Kalpakkam 603102, India. tual Monte Carlo steps. Such methods are cumbersome to
TOn leave from Institute of Mathematical Sciences, Taramaniuse and may require ill-defined averages of quantities whose
Chennai 600113, India. variance has weak divergendds]. In contrast, the method
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presented here has several advantages. Firstly, elastic con- ofl 501 )

stants are obtained from a coarse-graining procedure which F=kgT f d f(§f¢> +5ciVe(ni®). 1)
automatically gives the infinite system values. Secondly, our
procedure needs only the instantaneous particle configurgn,
tions and makes no reference to the potential or forces. It I8nergy in the high temperature phagebY=0) is given|[7]

therefore quite generally applicable @oy system for which by the following Ornstein-Zernicke form:
these configurations or “snapshots” are known. Lastly, it '

will soon be evident that this technique is easy to use requir-

ing a computational effort not much more than a calculation BG44(A)=(bgb_)=X%, ————,

of, say, the pair distribution functiof6] for a given particle 0 (Pat-a) ¢¢1+(q§¢,¢)2

configuration.

There are three essential elements or steps in the methodthere ¢, is the correlation length < \c/r), the (infinite

system susceptibility X:;¢f1<¢2> is, in turn, given by

(1) A procedure for calculating elastic strains from con-Mg—08G44(q), B=(kgT) * and the angular brackets

ﬁgurations_ :f[d¢] eXp(_,BF[{¢}]) . o
(2) The coarse-graining procedure of averaging fluctua- Consider further that we want to measure this susceptibil-

tions of these strains over larger and larger sub-blockdy from @ computer simulation of an Ising model within a
of lengthL,<L of a system of total sizé and calcu- finite simulation box of size.. In the course of the simula-

lating the values of these fluctuations in the thermody-liON We measurep averaged within a sub-block of size,

e correlation functiorG 4 4(q) implied by the above free

2

namic limit. <L,

(3) Converting the data for the strain fluctuations into elas- L
tic constants using well known results of continuum gngdf bddrqb(r). ?)
elasticity theory8,20!.

. . _Then the fluctuations o measured within this block are
We take up the second of these steps first as it is quite op

general and applicable to fluctuations of any intensive vari- o Ly
able. Indeed, variants of this method have been used exten- <¢2>LbLg=Lng d9 ' d9r (p(r)ep(r')),
sively [21-25 in the past for obtaining finite size scaled

susceptibilities and goes by the name of “block analysis.” In Lp

the next sectionSec. 1) we describe this block-analysis Zf d BG44(r)

technique for obtaining the susceptibility of the two-

dimensional Ising moddl24] for illustration. In Sec. Il we =t (4

define the microscopic straing;(r) and describe how we .

obtain them from our computer simulations. We then explainvhereG,, 4(r) is the inverse Fourier transform of the corre-

how to adopt the coarse-graining scheme described in Sec. [ition function defined in Eq(2) and is given[7], quite
for strains to finally obtain the elastic constants. This is fol-generally, by

lowed by our results for the hard disk and the inverse twelfth

power “soft” disk systems in two dimensions. We conclude Gyyl(r)= §—2X$¢|r|(d—2)y(|r|/§¢¢), (5)
this paper with a discussion of these results and enumerating
future directions. where
o iz cosé
Il. FINITE SIZE SCALING OF FLUCTUATIONS Y( ”):f deldzf (2m) 940y ———. (6)
IN SUBSYSTEMS 0 [22+ 7?]

The block analysis method has been used to obtain the
compressibility of the Ising lattice ga$22], the two-

dimensional Lennard-Jones flui@3,24] and fluids with in- _ .
ternal classical and quantum degrees of freef@627. Be- (€S, however, is strongly dependent on the enseqggin
which the simulation is carried out. For example, using the

low, we describe a version of this method which allows us toI ; I g " d ical” bl
explicitly and systematically incorporate finite size effects/@tice gas[7] language, in a “grand canonical” ensemble

arising both from a nonzero correlation length as well agVhere the chemical compositiop of the lattice gas is al-

special constraints due to the nature of the ensemble usel§/ed to fluctuate keeping the chemical potential difference
This treatment is analogous to the one used in &8 for  xed (=0 in this casg the block susceptibility does ap-

analyzing density fluctuations in the two-dimensionalProach, forlargel,. In a canonical ensemble, however,
Lennard-Jones fluid. the average ofp over the entire system is constrained to

To begin, consider a general system described by a scalaanish for all times. In such a case the behaviopt@f’d) is
order parameterp(r). We are interested in obtaining ther- more complicated but can, nevertheless, be explicitly deter-
modynamic properties of this system in the disordered phasenined as follows.

It is therefore sufficient to use the following quadratic Helm-  Introducing the Lagrange multipliek and defining the
holtz free energy functionak[{¢}], new correlator,

One expects therefore that hg—L the block suscepti-
bility X'(;%—>X§¢. The behavior of the block susceptibili-
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FIG. 1. A plot of X'v as a function of the relative sub-block size

Ly/L as given by Eq(11) for various values of the parametefé FIG. 2. The susceptibilityx’'s(T) of a two-dimensional Ising
(=1, 5, 10, and 5p system in the constant magnetization ensemble as a function of the
relative sub-block size /L, for values of the temperaturé/J
) q >T./J. The symbols refer to simulation data of the critical lattice
G (r)=f [d]h(0) B(r)ex _ﬁF_Kf dr @], gas simulation of Ref.24] and the lines are fits of E11) to these
data.

where the free enerdly is given by Eq.(1), one shows that
that G/, ,(r)=G,,4(r)—A_. The constant\, is given by various values of./¢. One observes that fdr/é>1, ¥ (a)
b bé L L . h LN
—1 and Eq.11) goes over to the following simple limiting
1 (L form:
ALz—f dr G 4(1). (7)
Ld L _ ™ 3
XX x=X"[x—x°]. (12

Repeating the analysis witB () replaced byG,(r) 0ne  one can then extract™ from the slope of the linear region
obtains the desired finite size scaling form f&r° in the  at smallx. This is equivalent to the procedure followed, for
canonical ensemble. We derive this form explicitly for the example, in Ref[24] for extracting the compressibility of
case ofd=2 below. the lattice gas at the critical density. Obviously, fog~1,

The correlation functior(r) is this construction becomes less well defined and the finding
the “linear” region becomes subjective. Fitting the full data
to the form given in Eq(11) makes it possible to extradt™
even when the system size is not much bigger than the cor-
relation length. We illustrate this below using previously
whereK is a Bessel function and we have suppressed thpublished data of Rovere, Nielaba, and Binf24] obtained
subscripts irG, X, andé for simplicity. We have, therefore, from simulations of the lattice gas model using spin ex-

change dynamicé&anonical ensemble

2
G(r)= ¢ 27 Ko(1/¢) ®

A =X"L72W(L/§) 9 In Fig. 2 we plotx't as a function ofL/L,=1/x. This
_ _ _ _ choice of the axes is identical to the one used in the original
with the function¥(«) being defined as work [24] and is equivalent. The points are the data of Ref.

) [24] at various (dimensionless temperaturesT/J=T./J
1r1 .
_c 2 T2 =2.2699. The curves through the data are fits to @4).
V() < fo fo dxdy Ko(ax“+y7). (10 The extracted compressibility” are plotted in Fig. 3 and
compared with the previous estimafexl] based on linear
As can be easily verifiedV(«) goes to 1 within a range extrapolation and the theoretical cury29]. Though, for

O(1). Using the above expressions we find finally largeT where the correlation lengthremains small one gets
identical results X extracted from the fits to the full curve

Xho= X [W(xL/I&)— W (L/€)X?]. (11 continues to be closer to the theoreti¢akac) estimate as
T—T, (and consequentlf— ). Simultaneously, we also

This is the main result of this section. obtain from Eq.(11) an estimate for the correlation length

Note that the form given above implie¥'>—0 asL,  which is shown in Fig. 4. The agreement with thef89] is
— L. In general there will be higher-order corrections to Eg.not as good. This is only to be expected since the correlation
(11 coming from higher-order correlations signifying the length is a more sensitive quantity than the susceptibility.
breakdown of the quadratic form for the free energy @¢.  Also, the fitting procedure cannot overcome errors built into
These introduce terms of ordef?™) implying extra param- the data because of critical slowing down n&arwhich is
eters(with the constraintt"=0 being imposed to eliminate known to lead to a systematic underestimation due to the use
one of then. In Fig. 1 we have plotted’'vx x againstx for  of a biased estimatd31].
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45 local instantaneous displacement fielg(t) defined over the
40 - 4 set of lattice vector§R} of a reference latticéat the same
densit is
w | ] ityp) i
30 F 4 Ur(t)=R(t)—R, (13
X (T)25 B 7 where R(t) is the instantaneous position of the particle
o0 | _ tagged by the reference lattice poiRt In this paper we
i | concentrate only on perfect crystalline lattices; if topological
defects such as dislocations are present the analysis below
10 . needs to be modified. The instantaneous Lagrangian strain
5| | tensore;; defined afR is then given by[7,8],
O2 2.5 :I’, 3.5 4 L ou +auj+ o M 14
' T/)J ' “iT2\9R; T GR aRy aR;) (14

FIG. 3. The estimates foy..(T) as obtained from the fits shown The strains considered here are always small and so we,
in Fig. 2. (¢) compared with the estimates of RE24] (+). Note  hereafter, neglect the nonlinear terms in the definition given
that the finite size scaling analysis described here yields estimateshove for simplicity. The derivatives are required at the ref-
which are closer to the exact resqiurve. erence lattice pointR and can be calculated by any suitable

. finite difference scheme oneg(t) is known. We are now in

Further, close tdr the free energy functiondEq. (1)] 5 position to define coarse grained variab&%g which are

iﬁaf?g,ﬁfi ”)be dvflrlll'd, ftfhet correlattlpn th?Ct'fW(r) | simply averages of the strain over a sub-block of dige
' and this aftects our estimate 1or the Cormela-rno 4, ctyation of this variable then defines the size-

tion length. This is particularly important in two dimensions dependent compliance matrig;; =(ejeq). Before pro-
ceeding further, we introduce a compact Voigt notation
n(which replaces a pair of indices with one «) appropriate

for two dimensional strains—the only case considered in this
fpaper. Using £x and 2=y, we have

from the Ornstein-Zernike behavior, E@®), while in d=3,
~0.03 and hence Eqg&5) and(6) should be more accurate.
Far away from a critical point, on the other hand, none o

these criticisms apply and accurate estimates for the suscep- ij=11,22, 12,
tibility can be obtained even from relatively small systems (15)
even ind=2 using the ideas described here. a=1,2,3.
IIl. STRAIN FLUCTUATIONS AND ELASTIC CONSTANTS The only nonzero components of the compliance matrix are
A. Theory Sllz<6xx6xx>25221
Imagine a system in the constant N\{€anonical en-
semble at a fixed densify=N/V evolving in timet. For any S12= (€xx€yy) = Sot, (16)

“snapshot” of this system taken from this ensemble, the
S33:4<‘5xy‘5xy>-

%0 ' [ ' ' ' ' It is also useful to define the following linear combinations
25 '=_ S++=<€+5+>=2(Sll+slz)a
ol ] (17)
: S _=(e_€ )=2(S;1— S,
&/a 15 - © - where €, = e+ €,, and e_=¢€,,—€,,. Once the block-
© averaged strain&ijb are obtained, it is straightforward to
10 - o 7 calculate these fluctuatiorifor each value ot.).
< <>'<~>-,__ . Since we are interested in the elastic properties of the
5L O o g system far away from any phase transition, a quadratic func-
"""" tional for the Helmholtz free enerdy suffices. We therefore
0 ' ' L L . L ' ! use the following Landau functional appropriate for a two-
22 24 26 28 3T/}2 34 36 38 4 dimensional solid involving coarse-grained strains to qua-

dratic order in strains and its derivatives,

FIG. 4. The correlation lengté (in units of the lattice parameter
a) as a function of the scaled temperatdr&l of the lattice gas
model at the critical density. Symbols: our estimates from fits to the
data of Ref[24] and curve: theory Ref30]. +d,(Ve_(r))?+d3(Ves(r))?). (18

sz dr {c,€? +cre? +czes+d (Ve (r))?
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The coefficients; andd; are, of course, not all independent BV(r)=0 for r>o
because of further symmetrigg,8] which are present for the
two-dimensional triangular solid though this does not influ- BV(r)== for r<o,

ence the rest of our analysis. Note that ELp) is simply a

sum of three independent functionals én, e, andes,  whereo the hard sphere diameter can be used as the unit of
each of the forms given in Eq1). Thus the analysis de- |ength and there is no energy scale. This makes the hard disk
scribed in detail in Sec. Il carries over almost unchangedsystem particularly easy to simulate and is a popular testing
There is one small difference, however. Even in the canoniground for theories and techniquigs. On the other hand, a

cal ensemble with fixed box dimensions, the microscopicalculation of elastic constants in this system is difficult
strain fluctuations over the whole box are not zero but resince a harmonic description for such a solid does not exist at
mains a small number of the order af/()> whereais the  zero temperature. The energy vanishes and the free energy is

lattice parameter so that wholly entropic in origin. For this reason most computational
. 5 methods for obtaining elastic constants which work for
f ddr<6 (r)eg(0))=C B(E) _ (19) smooth potentials have to be either discarded or modified in

“ “PIL order to study elastic properties of hard systgm&—18§.

The only previous study of the hard disk elastic moduli is by
Wojciechowski and Brakai [18]. These authors carried out a
Monte Carlo simulation of 56 hard disks in a box of variable
+O(xh), shape in the constant stress ensenfble The elastic con-
stants were obtained from the fluctuations in the shape of the
entire box. Results were checked for finite size effects by
repeating a few test runs for 24, 30, and 90 particles.

In our method the results derived in the previous sections
carry over without any change to systems of particles inter-

obtain thesystem size independeqiantitiesS”,, ¢ andC acting with hard potentials. Further we automatically calcu-
af .

Once the finite size scaled compliances are obtained thl%ﬁ;gﬁfss:)zfetﬁga:]e;glfj?snli't;ess'tz\r{f 51 r(at\?v%ngzzseur:tssi;?]rstafl:rst;c
elastic constants, viz., the Bulk modulBs- pdP/dp and the y

. ) . range of densities 0.95p* <1.1 from Monte Carlo(MC)
shear modulug: are obtained simply using the formufe0] simulations with systems with sizes varying from 168 to

1 12480 particles. The simulations have been set up for a per-
BB= (21)  fect triangular lattice in a slightly rectangular simulation box
with periodic boundary conditions. The number of cells
along each side of the box is adjusted to make the simulation
Bu===——pBP, (22 box as close to a square as possible. In the hard disk system
one can considerably accelerate the MC dynamics using spe-
cial updating schemg$]. We use a square grid as an over-
1 | he simulation b d choose the grid size to b
Bu=———BP, (23) ay on the simulation box, and choose the grid size to be
2533 small enough to accommodate only one disk. An occupancy

list of the grid positions is computed and continuously up-

where we assume that the system is under a uniform hydrQiaseq. For an attempted move of a hard disk from one grid

static pressuré®. The two expressions fop should give  int 1o another, we first check if the new point is unoccu-
identical results and constitutes an excellent internal checEied and then check for overlap only with the particles oc-

for numerical accuracy. cupying the neighboring grid points. At the densjty?
This completes the description of our technique for ob-_ EZ:gl a standgrd simgla%ion Ead thé length of BCF VK%TC
taining elastic constants. It is obvious that throughout thesteps every 10th MC step has been taken for averaging ob-

d_envafll_(r)]n wel dol not exer re:]_er _tof the |r_1terpart|c|e_ 'n(;e_ra_c'servables, in particular the block analysis was done for 100
tions. The only place where this information is required is in 5 4om placements of the block.

the calculation of the pressufeof the system—a quantity —, Fig 5 we show the strain-strain fluctuations as a func-

routinely calculated in simulations. This, as we show later, is;on of the relative sub-block size computed in a system with
not a limitation even for systems with hard core potentialsy,_ 3150 hard disks at a density pf =1.0. The data are

where the calculation of pressure is more involy&d]. We fitted to Eq.(20) where we keep terms up to orddry(/L)*.
now describe our results for two models of two—dimensionaLI-he fits to Eq.(20) are excellent and the infinite system

sphds. Th? elastic constants in ea_ch case are ob@amgd forc%mpliancessﬁﬁ can be determined immediately. To deter-
high density perfect triangular solid. The generalization of . B .
mine the sensitivity of our results to the total system size we

this method for higher dimensions, more complicafleds . )
symmetrical crystal types and even for amorphous materialshave also simulated systems_ W"m: 1_2 480, 789’ and an
: . extremely small system consisting Nf= 168 particles. Us-
is straightforward. . AP :

ing the “infinite” system values determined from thé
= 3120 particle system it is, in principle, possible to predict
the behavior of the strain fluctuatior®s(Ly) for the other
Hard disks interact with the extremely short-ranged po-systems. In Fig. 6 we have plott&d;(L ) for 12 480, 3120,

tential, 780, and 168 patrticles. The points are the simulation data

Incorporating this modification into Eq11) we get
2

where the indexy takes the valuest, —, or 3 andx
=L,/L and we have suppressed subscriptsécend C for
clarity. The above equation Eg20) can now be used to

si-s,

vy~

W(XL/&)—(W(L/&)—C(?

B. Hard disks
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FIG. 5. Strain-strain fluctuations or elements of the compliance P
matrix S, defined in Eq.(16) (y=+,—, or 3) as a function of
relative sub-block sizé, /L, symbols: simulation data; curve: fit to
the scaling function Eq20). The result§symbolg shown are for a
system ofN=3120 hard disks gt* =1.0.

FIG. 7. The equation of state of the hard disk solid, presBire
as a function of the density*. We compare our results() with
those of Ref[18] (+) and the free volume theorine).

and those for the elastic constants are shown in Fig. 8. The

while the curves are fits to E¢20) where the value 0833 two expressions for the shear modulus in E§®) and (23)
was constrained to be fixed at that obtained from the data fogive almost identical results and this gives us confidence
3120 particles. The results are seen to be almost insensitiabout the internal consistency of our method. We have also
to the total system size as expected. compared our results to those of Wojciechowski and” Baan

Once the complianceS,,, are obtained the elastic con- [18]. We find that while their values of the pressure and bulk
stants, in units okgT/o?, can be derived immediately using modulus are in good agreement with ouend with free
Egs.(21)—(23). Our results for densities other thafi=1.0  volume theory they grossly overestimate the shear modulus.
were obtained from Monte Carlo simulations fdr=3120  This is probably due to the extreme small size of their sys-
hard disks. To obtain the pressure, which is required fotems and/or insufficient averaging. Our results for the sub-
evaluating the shear modulys, we simply integrate our block analysis shows that finite size effects are nontrivial for
bulk modulusB (independent of the pressure in two dimen- elastic strain fluctuations and they cannot be evaluated by
siong starting from the rather high densip/ =1.1 where 10000 «
the free volume[32] expression for the pressur8Po? ;
=P*=2p/(2/\3p—1) is accurate. Our resulf83] for the
equation of state for the hard disk system is shown in Fig. 7

1000 F
0.0048 '
B, u
0.0032 100 ¢
LG (&)
0.0016

10 1 1 1 1 1 1 1 l

096 098 1 1.02 1.04 1.06 1.08 1.1 1.12
p*

0 0102030405 06070809 1 FIG. 8. The bulk(B) and shear &) moduli in units ofkgT/c?

for the hard disk solid. Our results f& («) are given byl (<).

FIG. 6. The infinite system susceptibilif; obtained from the  The values for the corresponding quantities from HaB] are
data forN=3120 particles is used to predict the finite size behaviorgiven by+ andXx. The line through the bulk modulus values is the
of N=168, 780, and 12480 particles. Fur=168, 780, and 3120 analytical expression obtained from the free volume prediction for
the symbols are simulation data and the solid lines are the best fithe pressure. The line through our shear modulus values is obtained
to the form given in Eq(20) where the paramete®; is kept fixed ~ from the free volume bulk modulus using the Cauchy relation
at the value obtained from fits to the data for 3120 particles. For=B/2— P. The error bars in our values for the shear modulus cor-
N=12480 we have acquired dataymbols only for L/L,= an respond to the two alternative formulas for evaluagings given in
integer(between 4 and 3%nd the dotted line is a straight line with Egs.(22) and(23) and represents our most conservative error esti-
the slope given by the san&s;. mates.
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FIG. 10. Same as in Fig. 5 but fd\= 780 soft disks interacting

o with the inverse 12th power potential gt =1.05 andT* =1.
FIG. 9. The percentage deviatidn, of our shear modulus val-

uesu from that obtained from our bulk moduli using the Cauchy
relationu=B/2— P as a function of the density*. The error bars
in this graph correspond to the two formulas for evaluatings
given in Egs.(22) and(23) as in the previous figure.

in order to generate configurations in the canonis T
ensemble. The temperatufé =kgT/e is fixed at 1 and the
densityp* = po? at 1.05—a state sufficiently far from melt-
ing. The number of particles were chosen to Ke 780

varying the total size of the system from 24 to 90, an intervalich is same as that used in RE87] and corresponds to
which is less than half of a decad®4]. One immediate 26X 30 unit cells of a triangular lattice within a nearly square

consequence of our results is that the Cauchy rel&fi685 box. Starting from the perfect lattice initial configuration, the
w=B/2—P* is seen to be valid up t& 15% over the entire system was equilibrated for more tharf tolecular dynam-

density range we studidgee Fig. 9 though there is a sys- ICS time steps&t=_0.002(|n units of ymo?/e wheremis the
tematic deviation which changes sign going from negativenass of the particlgs Subsequently, averages of thermody-
for small densities to positive as the density is increasedi@mic quantities were calculated overl0" uncorrelated
This is in agreement with the usual situation in a variety ofconfigurations. Our results for the elastic complianggs
real system§35] with central potentials and highly symmet- are similar to that in the hard disk case and are shown in Fig.
ric lattices and in disagreement with REE3]. We have also ] )

compared our estimates for the elastic constants with the The final estimates for the bulk modulis=77.96 and
density functional theoryDFT) of Rhysov and Tareyeva Shear modulug.=23.34(in units ofksT/0?) compare well
[36]. We find that both the bulk and the shear moduli areWith those of Ref[37] (viz. B=79.71 andu =24.96). Errors

gross'y overestimated—sometimes by as much as 100%. in our estimate for the bulk modulus arise from statistical
error in the acquired data and from the fits this is around 3%.

C. Soft disk The shear modulus being a more sensitive quantity to com-
- SO dISKS pute is less accurate and the two expressionsufan Eqgs.

The system of particles in two dimensions interacting by a22) and (23) now differ by 10-15 %(the number quoted
purely repulsive inverse 12th power pair potentiét;;) of  above is the average valu&his may be due to the smaller
the form given by size of our system compared to the hard disk case, and be-

cause subsequent configurations in molecular dynamics
12 . . .
_|o simulations are more correlated than in Monte Carlo.
v(r)y=e T (24

. . . . IV. CONCLUSION
has been studiefB7,38 quite extensively. This system has

the advantage of being realistic without being too compli- In summary, we show in this paper that a systematic
cated, since the form of the potential ensures that the entireoarse-graining analysis of strain fluctuations yields elastic
equation of state can be determined from that of a singleonstants of solids from computer simulations to high accu-
isotherm[37]. The quantitiese and o sets the scales for racy. Our method incorporates finite size scaling and pro-
energy and distance respectively and can be both set equal doices elastic constants in the thermodynamic limit. The pro-
unity. Both the zero and the finite temperature elastic coneedure is simple to implement and is general enough to be
stants of this system has been calculated over a large rangarried out for any system without modification. Before we
of densitied 37]. We have used this system to test the appli-end this paper, the following comments are, perhaps, in or-
cablity of our method to molecular dynamics simulations.der.
Our results here are not as extensive as in the hard disk case The coarse-graining variablezirstly, we introduced this
and we obtain elastic constants only for a single state pointwork as a “test” case of a general coarse-graining procedure
We simulate this system with a simple leapfrog molecularwhich may be used to study the connection between micro-
dynamics code incorporating a Nes®over thermostal6]  scopic computer simulations and long wavelength physics
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contained in continuum field theory approaches for phasef point defects in solids is vanishingly smat 10 2
transitions in solids. In this regard we would like to point out — 10 * atomic percent and they are not expected to change
that we found, as usual, the choice of the coarse-graininghe elastic constants substantially. In any case they can be
variable to be important. Our results show that microscopi®asily taken into account by redefining the reference lattice
strains calculated by taking finite differences of the displacepoints. Topological defects introduce, in addition, a singular
ment field constitute the correct variable to coarse grain ovelpart in the displacement field so that the strain field cannot
One could alternatively have averaged the displacement fieldow be evaluated simply by taking numerical derivatives.
u(r) and calculated the strains from the coarse grained However, the singular contribution for each dislocation is
This procedure happens to produce wrong results giving uknown analytically—so that for a given configuration one
elastic constants that are orders of magnitude too large. can locate topological defects of each type and treat the
The strain correlation lengthOne of the results from our smooth and the singular parts separately. Lastly, we would
calculations is the correlation length,; of strain fluctua- like to point out that the above two problems, viél) ob-
tions. This is found to be small, 2—-3 lattice spacings, for alltaining an equilibrium defect concentration af®l evaluat-
components of the strain-strain correlation functions and foing the finite size scaling of singular strain fields of configu-
both the systems. We have checked this independently brgations containing defects are presentaih techniques for
explicitly measuring the correlation functioBs4(||R||) de-  calculating elastic constants, although so far they seem not to
fined for all the lattice vector® of the two-dimensional have recieved the attention they deserve.
triangular reference lattice in the soft sphere system. Though The renormalization of elastic constants by dislocations
the simple Ornstein-Zernicke form is inadequate to describean also be obtained approximately by using standard recur-
detailed features of the correlation function and actual valuesion relationg12] once the core energy of a dislocation is
for the correlation length are hard to estimate, preliminaryknown (for instance from a separate simulatioand the
results from our simulations do support the above contentiorpresent(manifestly “bare”) values of the elastic constants
The correlation of the local density(r) or its phase—the are used as inputs. Such a calculation has applications in a
displacement fieldi(R) is, of course, long ranged, decaying study of two-dimensional meltind11,12. We are, at
algebraically as it should in the solid state. present, carrying out detailed calculations of the elastic con-
Renormalization by defect©ur results for the elastic stants, equation of state, and dislocation core energies of the
constants are obtained for high density perfect solids. In gerhard disk and inverse power triangular solids to investigate
eral, a solid contains pointvacancies and interstitigland  their melting behavior. Further, near to the melting transition
line (dislocation$ defects. For example, in the hard disk caseadditional finite size effects would be manifésiue to di-
dislocations start appearing in our systems below a density oferging correlation lengthsand they have to be taken into
p*=0.95, a range we have not explored in this paper. Iraccount separately which would necessarily involve simula-
principle, there is no reason why our method cannot bdions of a much larger scale than employed here. For ex-
adapted for systems containing defects though this involveample, it is known that near the liquid-to-hexatic transition
considerable computational complexity. There are basicallyp* =0.89) N =256 hard disks are requirde0] in order to
two problems that arise when one wishes to calculate elastieach the thermodynamic limit.
constants in the presence of defects. Firstly, we have to en- Evaluation of local stressed astly, we would like to
sure that the density of each type of defect on the averageoint out that our procedure can also be used in an *“in-
attain their equilibrium value. This is nontrivial becauseverse” mode where knowing the elastic constants for a sys-
nucleation barriers for defects densities are usually higliem, strain fluctuations can be used to calculate local
which means large system sizes and long simulation timestresses. This is especially useful in experimental studies
are required. Defect mobilities are sluggish in a solid but td41,42 of melting behavior of colloidal particles where high
ensure that they are fully equilibrated one has to wait longquality digitized particle images are available. Efforts in this
enough to allow a typical dislocation to travel a distancedirection are in progress.
equal to the system siz89]. Secondly, once we are sure that
our config_qrations contain, on the average, th_e rgquir_ed de- ACKNOWLEDGMENTS
fect densities, we have to evaluate the strain field in the
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